a004-1.jpg 

定理內容:
△ABC中,直線AC上一點E,直線BC上一點D,直線AB上一點F
若AD、BE、CF三線共點或互相平行
則AF/FB*BD/DC*CE/EA=1
此定理也叫西瓦定理、塞瓦定理

定理證明:

a004-1.jpg 

AF/FB*BD/DC*CE/EA
=△CAG/CBG*△ABG/△ACG*△BCG/△BAG
=1

得證


逆定理內容:
△ABC中,直線AC上一點E,直線BC上一點D,直線AB上一點F
若AF/FB*BD/DC*CE/EA=1AD、BE、CF三線共點
則AD、BE、CF三線共點或互相平行

逆定理證明:

a004-1.jpg

同一法
設AD與BE的交點為G
設CG與AB的交點為F'
由Ceva定理
AF'/F'B*BD/DC*CE/EA=1

比照條件AF/FB*BD/DC*CE/EA=1
得AF'/F'B=AF/FB
即AF'/AB=AF/AB
即F'和F為同一點

故AD、BE、CF三線共點

得證

 

創作者介紹

幾何寶庫

ej0cl6 發表在 痞客邦 PIXNET 留言(3) 人氣()


留言列表 (3)

發表留言
  • 路過
  • 逆定理內容下面第二行好像多了
  • q199283
  • 沒多喔
    題目沒定義G點
  • 2288845498465486465rukuykuyk1rtdh15tk1y2td315i1i6po1[out52b2n vnmjokgh1351321m32uyg1m2.0hgm21ygu2g1m
  • 不多廢話了